Submanifolds and the Sasaki Metric
نویسنده
چکیده
This is the content of a talk given by the author at the 2009 Lehigh University Geometry/Topology Conference. Using the definition of connection given by Dieudonné, the Sasaki metric on the tangent bundle to a Riemannian manifold is expressed in a natural way. Also, the following property is established. The induced metric on the tangent bundle of an isometrically embedded submanifold is the Sasaki metric if and only if the submanifold is totally geodesic.
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملTotally geodesic property of the Hopf vector field. ∗
Totally geodesic property of the Hopf vector field. Abstract We prove that the Hopf vector field is a unique one among geodesic unit vector fields on spheres such that the submanifold generated by the field is totally geodesic in the unit tangent bundle with Sasaki metric. As application, we give a new proof of stability (instability) of the Hopf vector field with respect to volume variation us...
متن کاملOn Submanifolds in a Riemannian Manifold with a Semi-Symmetric Non-Metric Connection
In this paper, we study submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection on a submanifold is also semi-symmetric non-metric connection. We consider the total geodesicness and minimality of a submanifold with respect to the semi-symmetric non-metric connection. We obtain the Gauss, Cadazzi, and Ricci equations for submanifold...
متن کاملOptimal Inequalities for the Casorati Curvatures of Submanifolds in Generalized Space Forms Endowed with Semi-Symmetric Non-Metric Connections
Abstract: In this paper, we prove some optimal inequalities involving the intrinsic scalar curvature and the extrinsic Casorati curvature of submanifolds in a generalized complex space form with a semi-symmetric non-metric connection and a generalized Sasakian space form with a semi-symmetric non-metric connection. Moreover, we show that in both cases, the equalities hold if and only if submani...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کامل